Isolation of exosome from the culture medium of Nasopharyngeal cancer (NPC) C666-1 cells using inertial based Microfluidic channel

Isolation of exosome from culture medium in an effective way is desired for a less time consuming, cost saving technology in running the diagnostic test on cancer. In this study, we aim to develop an inertial microfluidic channel to separate the nano-size exosome from C666-1 cell culture medium as a selective sample. Simulation was carried out to obtain the optimum flow rate for determining the dimension of the channels for the exosome separation from the medium.
The optimal dimension was then brought forward for the actual microfluidic channel fabrication, which consisted of the stages of mask printing, SU8 mould fabrication and ended with PDMS microchannel curing process. The prototype was then used to verify the optimum flow rate with polystyrene particles for its capabilities in the actual task on particle separation as a control outcome. Next, the microchip was employed to separate the selected samples, exosome from the culture medium and compared the outcome from the conventional exosome extraction kit to study the level of effectiveness of the prototype.
The exosome outcome from both the prototype and extraction kits were characterized through zetasizer, western blot and Transmission electron microscopy (TEM). The microfluidic chip designed in this study obtained a successful separation of exosomes from the culture medium. Besides, the extra benefit from these microfluidic channels in particle separation brought an evenly distributed exosome upon collection while the exosomes separated through the extraction kit was found clustered together. Therefore, this work has shown the microfluidic channel is suitable for continuous separation of exosomes from the culture medium for a clinical study in the future.

Characterization of surface markers on extracellular vesicles isolated from lymphatic exudate from patients with breast cancer

Background: Breast cancer is the most common cancer, and the leading cause of cancer-related deaths, among females world-wide. Recent research suggests that extracellular vesicles (EVs) play a major role in the development of breast cancer metastasis. Axillary lymph node dissection (ALND) is a procedure in patients with known lymph node metastases, and after surgery large amounts of serous fluid are produced from the axilla. The overall aim was to isolate and characterize EVs from axillary serous fluid, and more specifically to determine if potential breast cancer biomarkers could be identified.
Methods: Lymphatic drain fluid was collected from 7 patients with breast cancer the day after ALND. EVs were isolated using size exclusion chromatography, quantified and detected by nanoparticle tracking analysis, electron microscopy, nano flow cytometry and western blot. The expression of 37 EV surface proteins was evaluated by flow cytometry using the MACSPlex Exosome kit.
Results: Lymphatic drainage exudate retrieved after surgery from all 7 patients contained EVs. The isolated EVs were positive for the typical EV markers CD9, CD63, CD81 and Flotillin-1 while albumin was absent, indicating low contamination from blood proteins. In total, 24 different EV surface proteins were detected.
Eleven of those proteins were detected in all patients, including the common EV markers CD9, CD63 and CD81, cancer-related markers CD24, CD29, CD44 and CD146, platelet markers CD41b, CD42a and CD62p as well as HLA-DR/DP/DQ. Furthermore, CD29 and CD146 were enriched in Her2+ patients compared to patients with Her2- tumors.
Conclusions: Lymphatic drainage exudate retrieved from breast cancer patients after surgery contains EVs that can be isolated using SEC isolation. The EVs have several cancer-related markers including CD24, CD29, CD44 and CD146, proteins of potential interest as biomarkers as well as to increase the understanding of the mechanisms of cancer biology.

Understanding the Role and Clinical Applications of Exosomes in Gynecologic Malignancies: A Review of the Current Literature

Background: Gynecologic malignancies are those which arise in the female reproductive organs of the ovaries, cervix, and uterus. They carry a great deal of morbidity and mortality for patients, largely due to challenges in diagnosis and treatment of these cancers. Although advances in technology and understanding of these diseases have greatly improved diagnosis, treatment, and ultimately survival for patients with gynecologic malignancies over the last few decades, there is still room for improvements in diagnosis and treatment, for which exosomes may be the key. This paper reviews the current knowledge regarding gynecologic tumor derived-exosomal genetic material and proteins, their role in cancer progression, and their potential for advancing the clinical care of patients with gynecologic cancers through novel diagnostics and therapeutics.
Literature review: Ovarian tumor derived exosome specific proteins are reviewed in detail, discussing their role in ovarian cancer metastasis. The key microRNAs in cervical cancer and their implications in future clinical use are discussed. Additionally, uterine cancer-associated fibroblast (CAF)-derived exosomes which may promote endometrial cancer cell migration and invasion through a specific miR-148b are reviewed. The various laboratory techniques and commercial kits for the isolation of exosomes to allow for their clinical utilization are described as well.
Conclusion: Exosomes may be the key to solving many unanswered questions, and closing the gaps so as to improve the outcomes of patients with gynecologic cancers around the world. The potential utilization of the current knowledge of exosomes, as they relate to gynecologic cancers, to advance the field and bridge the gaps in diagnostics and therapeutics highlight the promising future of exosomes in gynecologic malignancies.

Pathogenic Mechanisms of Preeclampsia with Severe Features Implied by the Plasma Exosomal miRNA Profile

Preeclampsia is a complication of pregnancy characterised by high blood pressure and organ damage after 20 gestational weeks. It is associated with high maternal and fetal morbidity and mortality; however, at present, there is no effective prevention or treatment for this condition. Previous studies have revealed that plasma exosomal miRNAs from pregnant women with preeclampsia could serve as biomarkers of pathogenic factors. However, the roles of plasma exosomal miRNAs in preeclampsia with severe features (sPE), which is associated with poorer pregnancy outcomes, remain unknown.
Thus, the aims of this study were to characterise plasma exosomal miRNAs in sPE and explore the related pathogenic mechanisms using bioinformatic analysis. Plasma exosomes were isolated using a mirVana RNA isolation kit.
The exosomal miRNAs were detected using high-throughput sequencing and the miRNAs related to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and gene ontology (GO) terms were analysed using the clusterProfiler package of R. Fifteen miRNAs exhibited increased expression and fourteen miRNAs exhibited reduced expression in plasma exosomes from women with sPE as compared to normal pregnant women.
Further, gene set enrichment analysis revealed that the differentially expressed plasma exosomal miRNAs were related to the stress response and cell junction regulation, among others. In summary, this study is the first to identify the differentially expressed plasma exosomal miRNAs in sPE. These findings highlight promising pathogenesis mechanisms underlying preeclampsia.

Reagent for Total Exosome Isolation (Culture Media Supplement)

50 ml 2485.2 EUR

VEX Exosome Isolation Reagent (from cell culture media)

50 ml 706.8 EUR

ExoQuick Exosome Isolation and RNA Purification kit (for Tissue Culture Media)

10 preps 664.8 EUR

Exosome Purification and Detection Kit (Cell Culture)

25 tests 777.6 EUR

ExoPure? Reagent (Overall Exosome Isolation, cell media)

each 992.4 EUR

ExoPure? Reagent (Overall Exosome Isolation, cell media)

each 1083.6 EUR

ExoQuick-LP for lipoprotein pre-clear & exosome isolation

5 reactions 639.6 EUR

Lipid Droplet Isolation Kit

50 preps 498 EUR

ExoQuick-TC ULTRA EV Isolation Kit for Tissue Culture Media

20 reactions 694.8 EUR

CytoSelect Clonogenic Tumor Cell Isolation Kit (5 preps)

5 preps 957.6 EUR